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Introduction
In chronic inflammation, lipid abnormalities are important compo-
nents of atherogenesis that determine the progression and clinical 
manifestations of atherosclerosis.1,2

During the acute phase of inflammation associated with trauma 
or infection, there are marked changes in the composition and 
concentration of plasma lipids and lipoproteins.3 Early studies 
have shown that experimental modeling of systemic inflamma-
tory processes leads to changes in lipid metabolism, characterized 
by hypertriglyceridemia, increased levels of free fatty acids (FA), 
and decreased levels of low-density lipoprotein cholesterol (LDL-
C) and high-density lipoprotein cholesterol (HDL-C).4 Hypertri-
glyceridemia associated with acute-phase inflammatory proteins 
develops due to increased formation and decreased clearance of 
very-low-density lipoproteins.5 Reduction in lipoprotein lipase 
(LPL) and hepatic lipase activity also contributes to hypertriglyc-
eridemia and suppresses the formation of a specific HDL subclass 

associated with cholesterol efflux capacity (CEC).6 Furthermore, 
significant changes occur in the protein and lipid composition of 
lipoproteins, which may not only redefine their function but also 
increase their atherogenic and inflammatory properties.7

Dyslipidemia often occurs in autoimmune diseases such as 
rheumatoid arthritis (RA), type 1 diabetes, psoriasis, inflamma-
tory bowel disease, and other diseases. An imbalance in lipid me-
tabolism accelerates inflammatory reactions and contributes to the 
development of atherosclerosis. While there have been numerous 
studies on the relationship between abnormal lipid metabolism and 
RA, and evidence suggests that lipid abnormalities occur in the 
preclinical stages of RA, it remains unclear whether dyslipidemia 
plays a unique role in the onset and progression of RA.

The purpose of this review is to present the latest data on the 
effect of inflammation on proatherogenic disorders of lipid and li-
poprotein metabolism, with an emphasis on proinflammatory cy-
tokines. It aimed to analyze lipid and lipidomic blood profiles based 
on disease phase, inflammation activity, and research methods. The 
review identifies the necessity to study high-density lipoprotein sub-
fractions and their role in reverse cholesterol transport in RA pa-
tients as a promising direction for clarifying cardiovascular risk.

Effects of proinflammatory cytokines on lipid and lipoprotein 
metabolism
Numerous studies have shown that inflammation and inflamma-
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tory cytokines are closely related to lipid metabolism. Pro-in-
flammatory cytokines are involved in the regulation of adipocyte 
proliferation and apoptosis by stimulating lipolysis, inhibiting li-
pid synthesis, and reducing blood lipid concentration. Under the 
influence of pro-inflammatory cytokines during the inflammatory 
process, structural modifications and a decrease in HDL-C con-
centration occur, which are associated with the reduction of CEC 
proteins.8,9

Key cytokines affecting lipid metabolism include tumor necro-
sis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-1β. The most 
important source of pro-inflammatory cytokines is adipose tissue, 
consisting mainly of adipocytes, macrophages, and endothelial 
cells.10 Increased TNF-α levels in adipose tissue are associated 
with increased lipolysis, disruption of insulin action on glucose 
transport, decreased LPL expression, inhibition of fat cell recruit-
ment, and induction of apoptosis in fat cells.4

Several studies have demonstrated a negative effect of TNF-α 
on lipid metabolism.11,12 TNF-α affects LPL reduction and triglyc-
eride (TG) hydrolysis and enhances lipid mobilization from fat de-
pots, which probably causes proatherogenic changes in the blood 
lipid profile.13 In parallel, TNF-α stimulates the production of LDL 
in the liver, leading to the development of hypertriglyceridemia, 
which modulates the movement of cholesterol esters from HDL 
to LDL in exchange for TG mediated by cholesteryl ester transfer 
protein (CETP). Researchers found that lipolysis is mediated by 
TNF-α through the regulation of lipid droplet-associated perilipin 
protein expression, hormone-sensitive adipose tissue lipase, and 
triglyceride lipase.14,15 It has been suggested that the main physi-
ological goal of increased TNF-α expression may be to limit adi-
pose tissue overgrowth and subsequently induce insulin resistance 
and further disorders of glucose and lipid metabolism.16

The central inflammatory mediator IL-6 has a similar effect. 
IL-6 is known to be produced by visceral adipose tissue cells, 
including adipocytes and resident immune cells, primarily mac-
rophages.17,18 In obesity, the number of macrophages significantly 
increases, and adipocyte hypertrophy is accompanied by increased 
IL-6 production.19

Administration of recombinant human IL-6 to rhesus macaques 
resulted in changes in lipid metabolism, including a reduction in 
apolipoprotein (apo) A1, apoA2, and apoB levels, a decrease in 
HDL-C and LDL-C concentrations, and an increase in TG.20 Un-
der the influence of IL-6, the ratio of proatherogenic and antiather-
ogenic lipids, lipoproteins, and their protein components (apoB/
apoA1) is disturbed, which obviously increases cardiovascular 
risk.21

It is important to note that overexpression of IL-6 and its recep-
tors is found in areas of the vascular bed that are more exposed to 
atherosclerotic lesions (coronary, brachiocephalic, and peripheral 
arteries).22,23 Cytokine involvement and the protective function 
of IL-6 receptor inhibitors have been demonstrated in ischemia-
reperfusion injury of human cardiac myocytes.24

There was a marked increase in plasma concentrations of IL-
1, IL-6, IL-8, IL-10, and TNF-α receptor antagonists in men af-
ter marathon running.25 The increase in plasma concentrations of 
free FA, IL-6, and TNF-α during marathon running may be related 
to the release of angiopoietin-related protein 4. This mechanism 
is considered compensatory against lipotoxicity and oxidative 
stress.26 IL-6 and TNF-α can stimulate adipose tissue lipolysis 
during prolonged exercise independently of catecholamines and 
other factors.

The effects of pro-inflammatory cytokines on lipid metabolism 
may be mediated through increased formation of acute-phase pro-

teins.27 Inflammation primarily increases the production of C-reac-
tive protein (CRP), synthesized under the influence of IL-6, IL-1β, 
and TNF-α in liver and adipose tissue cells.28

The native circulating form of CRP is the pentameric form, 
which is released into the bloodstream after exposure to inflam-
matory stimuli.29 Native CRP is able to bind specifically to LDL 
when the pentameric structure of CRP changes to a monomeric 
structure or when LDL is modified/oxidized.30,31 Several in vitro 
studies have convincingly demonstrated CRP-mediated opsoniza-
tion of LDL with phagocytic cells through interaction with the im-
munoglobulin receptors, Fc gamma receptors I and II.32–34

In earlier studies, native CRP was shown to induce the release 
of proinflammatory cytokines from endothelial cells (vascular 
cellular adhesion molecule-1 (VCAM-1), intercellular adhesion 
molecule 1 (ICAM-1), and E-selectin) and monocytes (Monocyte 
chemoattractant protein-1), endothelial dysfunction, and monocyte 
adhesion to the endothelium.35 The negative effect of CRP on the 
vascular wall has been confirmed by studies of its interaction with 
angiotensin II and its effects on the integrity of the endothelial 
glycocalyx,36,37 as well as on increased expression of the lectin-
like oxidized low-density lipoprotein receptor-1 involved in the 
damaging effect of oxidized low-density lipoproteins (ox-LDL).38 
Moreover, LDL-associated CRP deposits have been detected in 
foci of atherosclerotic lesions and myocardial damage induced 
by ischemia/reperfusion in experimental animals and humans.39 
These observations served as a basis to consider CRP as an ac-
tive participant in atherosclerosis. Further study of the structural 
and functional relations of CRP in vitro and in vivo, and clearer 
diagnostics with separation of pentameric and monomeric forms 
of CRP, led to an understanding of the atheroprotective role of 
CRP.33,40

On the surface of activated platelets, apoptotic cells, and circu-
lating cell-derived microparticles, upon ligand binding or under 
conditions of high oxidative potential of the extracellular envi-
ronment, pentameric CRP irreversibly dissociates into insoluble 
monomers that have different pathophysiological functions from 
pentameric CRP.41,42

Monomeric CRP is thought to be involved in innate immunity 
processes through activation of the complement cascade,43 angio-
genesis, and atherothrombosis.44 Pentameric CRP is not involved 
in thrombogenesis, whereas monomeric CRP induces platelet ac-
tivation and thrombus growth. Additionally, pentameric and mon-
omeric CRP have different pathways for stimulating endothelial 
cells and neutrophils, and different ways of binding to ligands, 
including LDL and C1q.33,40

The atheroprotective role of monomeric CRP is evidenced by 
its ability to retard foam cell formation by suppressing the aggres-
sive response of macrophages to ox-LDL and to remove native 
LDL from the extracellular space, reducing the risk of modifica-
tions.45,46 Moreover, monomeric CRP reduces the proatherogenic 
effects of macrophages in binding to lysophosphatidylcholine in 
ox-LDL and inhibits the association of ox-LDL with macrophages. 
These effects may partially slow the progression of atherosclero-
sis.47

Thus, CRP has conflicting proangiogenic and antiangiogenic 
effects that establish tissue remodeling in an atherosclerotic plaque 
(ASP) and in infarct-affected tissues.33

Myeloperoxidase (MPO) is considered a key element in oxi-
dative damage to lipoproteins. MPO is a lysosomal enzyme that 
catalyzes the oxidation of various substrates, with hydrogen per-
oxide as a co-substrate. The specific oxidation products produced 
by MPO are found in ASP in large quantities.48
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The products of MPO-catalyzed reactions are strong oxidants 
that initiate lipid peroxidation and cause protein modification.49 
The enzyme increases the expression of P-selectin on the platelet 
surface and significantly raises the formation of oxygen radicals 
by platelets.50

MPO is thought to be a potent producer of oxidized LDL in 
vivo. Oxidized LDL accumulates in macrophages via class A1 
scavenger receptors (SR) and SR-B1.51 Another target of MPO 
is apoA1 HDL; by oxidizing this lipoprotein, MPO reduces its 
atheroprotective functions.52 Modified HDLs are less effective in 
stimulating cholesterol efflux and are rapidly degraded by mac-
rophages. Macrophages continue to engulf modified lipoproteins, 
and large amounts of lipids accumulate intracellularly, resulting in 
foam cell formation. Foam cells, in turn, have a pro-inflammatory 
effect by producing cytokines, chemokines, and growth factors, 
and by stimulating the secretion of adhesive molecules.53

Thus, systemic inflammation plays an important role in the 
development of disorders related to the blood cholesterol trans-
port system. Data from numerous studies indicate the influence of 
cytokines (TNF-α, IL-6) on the proatherogenic potential of blood 
lipids and lipoproteins, supporting the concept of the contribution 
of chronic inflammation to the development of atherosclerosis.

Immunomodulatory effects of HDL
In recent years, there has been increasing evidence for the immu-
nomodulatory properties of HDL. The determination of pro- or 
anti-inflammatory properties of HDL depends on the lipoprotein 
composition, the cholesterol content in macrophages, and the lead-
ing signaling pathways.54,55

HDLs undergo continuous remodeling processes in circula-
tion, characterized by a wide variety of subtypes differing in size, 
density, shape, charge, and composition. This allows researchers 
to distinguish dysfunctional or even “proatherogenic” particles 
from “antiatherogenic” HDL.56 The inflammatory process helps 
to reduce HDL levels and eliminate cholesterol from cells, lead-
ing to the production of proinflammatory HDL.57,58 Proteins and 
enzymes responsible for the proinflammatory activity of HDL 
have been identified. The content of acute-phase proteins (such 

as serum amyloid A, fibrinogen, haptoglobin, apoJ, and comple-
ment factors B, C3, and C9) is elevated in proinflammatory HDL 
complexes compared to normal HDL.59 In chronic inflammation, 
elevated concentrations of amyloid A, apoJ, and pancreatic phos-
pholipase A2 are found in serum and can displace the usual HDL 
components (apoA1, HDL, etc.). Moreover, changes in the acetyl-
hydrolase activity of HDL enzymes were observed: a decrease in 
paraoxonase 1 (PON1) and an increase in platelet-activating fac-
tor acetylhydrolase.56 Together, these changes contribute to the 
proatherogenic potential of HDL.

On the other hand, HDLs inhibit the production of pro-inflam-
matory cytokines and chemokines, which may ultimately prevent 
immune cell activation and reduce inflammation.60 The ability of 
HDL to inhibit the expression of ICAM-1, VCAM-1, and E-selec-
tin has been demonstrated in endothelial cells.61,62

HDL and apoA1 can suppress inflammation by binding directly 
to lipopolysaccharide or lipoteichoic acid, thereby neutralizing 
them.63,64 Several studies have clarified the immunomodulatory 
activity of HDL occurring without neutralization of lipopolysac-
charide. HDL can block the ability of serum amyloid A to induce 
the production of reactive oxygen species and activate the NOD-
like receptor protein 3 inflammasome involved in the formation 
of the active forms of IL-1β and IL-18.65 Pretreatment of human 
endothelial cells with HDL reduced TNF-α-induced expression of 
ICAM-1, VCAM-1, and E-selectin.66,67 Taborda et al.67 studied 
the ability of HDL to mediate immune-inhibitory effects on innate 
immunostimulatory compounds via Toll-like receptors and inflam-
masomes without affecting the expression of pattern recognition 
receptors. These results suggest that HDL may modulate the im-
mune response induced by various stimuli, thereby influencing the 
inflammatory response.68

The comparative characterization of normal and proinflamma-
tory HDL is presented in Table 1.

In recent years, understanding of the mechanism of cholesterol 
transfer from biomembranes to HDL has greatly advanced through 
studies of plasma factors and cellular proteins in mouse models.69 
In 2022, researchers identified previously unknown membrane 
proteins associated with the regulation of lipoprotein metabolism 
and the cell’s ability to release membrane cholesterol, thereby 
clarifying mechanisms of reverse cholesterol transport.68,70 HDL 

Table 1.  Comparative characteristics of normal and pro-inflammatory HDL

Effects Anti-inflammatory (normal) HDL Pro-inflammatory HDL

Inflammatory Apo AI reflects the antiatherogenic activity of 
lipoproteins and suppresses the atherogenic activity 
of ox-LDL; TNF-α regulation in macrophages; 
Prevention of EC IL-8, MCP-1 expression

Promote the oxidation of LDL; The synthesis 
of enzymes decreases under the influence of 
inflammation; Serum amyloid A, ceruloplasmin 
replace the usual components of HDL

Anti-oxidant properties PON1 prevents the formation of oxidation products; 
Endothelial protection; Upregulation of EC and NO 
production; EC express receptors for apoA-I and HDL

The connection between PON1 and altered 
apoA1 is disrupted; PAPC interacts with the 
oxidation products of arachidonic acid to 
form biologically active oxidation products

Reverse cholesterol 
transport

ApoA1 and apoJ in HDL transport cholesterol from 
arterial vascular cells and macrophages to other 
lipids and liver cells for processing and disposal

The functions of apoA1 and apoJ are impaired 
by oxidative stress; Lipoprotein synthesis is 
reduced under the influence of inflammation

Platelet responses Binding of mildly and native ox-LDL to apoER2′ and 
SR-BI on the platelet membrane induces signaling 
pathways that suppress platelet activation

Platelet activation through binding 
via CD36 to heavily oxidized HDL

AI, atherogenic index (TC/HDL-C); apo, apolipoprotein; apoER2, apoE receptor 2; EC, endothelial cells; HDL, high-density lipoprotein; IL-8, interleukin 8; MCP-1, monocyte chem-
oattractant protein 1; NO, nitric oxide; ox-LDL, oxidized low-density lipoproteins; PAPC, Paraxial protocadherin; PON-1, paraoxonase 1; SR-BI, scavenger receptors class B type I; 
TNF-α, tumor necrosis factor alpha.
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directly transports cholesterol to SR-B1 receptors expressed in the 
liver. Alternatively, cholesterol from HDL transfers to LDL and 
very-low-density lipoproteins via CETP, then returns to the liver 
through LDL receptors, where it is metabolized into bile acids and 
excreted into the intestinal tract. Cholesterol exported from cells is 
transferred to large spherical HDL by the ATP-binding cholesterol 
transporter (ABC) G1. A related transporter, ABCA1, delivers cel-
lular cholesterol to apoA1 and small dense HDL.68

The importance of the reverse cholesterol transport system has 
become evident from large cohort studies in humans, which con-
sistently show an inverse association between the ability of apoB-
containing lipoprotein-depleted plasma to uptake macrophage-
derived cholesterol and cardiovascular disease (CVD) risk.71,72 In 
healthy subjects with varying HDL-C and apoA1 levels, the ability 
of HDL to CEC from macrophages in vitro correlates inversely 
with measures of carotid intima-media thickness, independent of 
HDL-C and apoA1 concentrations.73

However, even with efficient acceptors, there may be factors 
limiting cholesterol efflux from membranes, potentially contribut-
ing to various proatherogenic abnormalities.74–76

The ability of serum to induce ABCA1-mediated CEC was re-
duced in patients with type 2 diabetes mellitus with microalbu-
minemia and proteinuria. The authors attributed this impaired CEC 
to low levels of preβ-1 HDL.77 Additionally, depletion of preβ-1 
HDL induced by chymase (a mast cell-secreted proteinase) therapy 
impaired ABCA1-mediated but not SR-B1-mediated, cholesterol 
efflux from J774 macrophages.78 Specific genomic variants of li-
poprotein receptors, apoB-100, Proprotein Convertase Subtilisin/
Kexin type 9, and other loci may contribute to lipid metabolism 
abnormalities complicating vascular disorders in type 2 diabetes 
mellitus.79,80

Disorders of blood lipid and lipoprotein metabolism in pa-
tients with rheumatoid arthritis
RA is an autoimmune disease of unknown etiology characterized 
by chronic erosive arthritis with a progressive course, leading to 
serious complications and severe comorbidity. RA is associated 
with early disability and reduced life expectancy among patients.81 
CVDs play a significant role in the development of adverse out-
comes in RA.82 Numerous studies have shown that the relative risk 
of cardiovascular events in RA patients ranges from 1.4 to 3.7.83 In 
a recent large cohort study, mortality rates remained high among 
RA patients (n = 16,047) observed from 2005 to 2018: the rela-
tive risk for death from all causes was 1.22 (95% confidence inter-
val (CI) 1.15–1.30), from CVD - 1.63 (95% CI 1.51–1.75), from 
myocardial infarction - 2.00 (95% CI 1.78–2.26), and from stroke 
- 1.39 (95% CI 1.22–1.58). The risk of CVD in RA patients in-

creases from the early years after diagnosis and does not decrease 
over time.84

The main mechanism leading to the development of CVD in RA 
is atherosclerotic vascular damage.85 The multifactorial pathogen-
esis of atherosclerosis involves vascular, metabolic, and inflamma-
tory components.86 Disorders of blood lipid and lipoprotein me-
tabolism are implicated in all three components and play a direct 
role in the formation of atherosclerotic vascular lesions in RA.87,88 
According to meta-analyses, patients with RA and hypercholester-
olemia have a 73% higher incidence of CVD compared to patients 
without it.87

Blood lipid profile of RA patients
Inflammation in RA occurs with increased catabolism of lipopro-
teins, often leading to decreased serum levels of HDL and LDL. 
Despite this so-called “lipid paradox,” patients remain at high risk 
of CVD.89,90 Many researchers have observed lower concentra-
tions of total cholesterol, LDL-C, and HDL-C in patients with ac-
tive, untreated RA compared to healthy controls and patients with 
osteoarthritis.91–96 In a prospective study, VanEvery et al.97 have 
found an association between low LDL-C concentrations and RA 
risk. Other authors suggest that early-stage RA is associated with 
normal or reduced serum TG and total cholesterol levels, which, 
combined with a more pronounced reduction in HDL-C, may in-
crease atherogenic potential.98 Additionally, smaller, more athero-
genic lipoprotein phenotypes have been detected in early RA pa-
tients compared to controls.94 The formation of small dense LDL 
particles has been attributed to the acute phase reaction.99

In recent years, the atherogenic index of plasma (AIP), the loga-
rithm of the ratio of TG/HDL-C, has been well-established as a 
predictor of coronary heart disease in the general population and 
in type 2 diabetes mellitus.100–103 Hammam et al.104 found asso-
ciations between AIP and 10-year CVD risk as determined by the 
Framingham scale in patients with RA and systemic lupus erythe-
matosus (SLE). The potential role of AIP in predicting and manag-
ing CVD risk in autoimmune rheumatic diseases has been investi-
gated in several other studies.105–108

Similar data were obtained when analyzing the blood lipid 
spectrum in patients with untreated early RA included in the RE-
MARCA (Russian invEstigation of MethotrexAte and biologicals 
in eaRly aCtive inflammatory Arthritis) trial. Decreased total cho-
lesterol and HDL-C levels, along with increased AIP, were found 
in RA patients compared to healthy controls (Table 2).

In contrast, other studies have found higher levels of total cho-
lesterol, LDL-C, TG, and, to a lesser extent, low HDL-C, resulting 
in significantly higher AIP in patients with early RA compared to 
healthy individuals.109,110 It is important to note that total choles-
terol and TG levels increase even before the clinical manifestations 

Table 2.  Blood lipid spectrum in patients with early RA and in control (REMARCA trial), Me [25th; 75th percentile]

Blood lipids RA (n = 154) Сontrol (n = 104) p

Total cholesterol, mmol/L 5.22 [4.63; 5.98] 5.88 [5.45; 6.63] 0.036

LDL-C, mmol/L 3.41 [2.84; 4.14] 3.78 [3.53; 4.26] 0.01

HDL-C, mmol/L 1.32 [1.03; 1.62] 1.73 [1.43; 1.97] 0.023

TG, mmol/L 1.13 [0.86; 1.63] 1.03 [0.85; 1.39] 0.12

AIP (TG/HDL-C) 1.1 (0.6; 1.9) 0.6 (0.4; 1.5) <0.001

AIP, atherogenic index of plasma; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; RA, rheumatoid arthritis; REMARCA, Russian invEstiga-
tion of MethotrexAte and biologicals in eaRly aCtive inflammatory Arthritis; TG, triglyceride.
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of RA, and the subsequent development of chronic inflammation 
can explain the decrease in these indicators.98

Lipidomics has shown that serum lipid profiles in patients with 
active RA are similar to those of patients with preclinical RA, con-
firming alterations in lipid metabolism before disease onset.111,112 
In a prospective cohort study of anti-citrullinated protein antibody 
(ACPA) positive individuals, higher levels of monohydroxyei-
cosatetraenoic acids (5-HETE, an important precursor to leukot-
rienes) appeared to be associated with the subsequent development 
of inflammatory arthritis.111 Other predictors of RA development 
in ACPA-positive individuals were decreased levels of apoA1 and 
ω-3 FA.113,114 A body of research suggests a role for polyunsatu-
rated FA metabolites in preclinical RA. However, the mechanism 
of their action is still poorly understood.115,116

A recent study by Koh et al.117 demonstrated a marked shift in 
the lipidome profile in the synovial fluid of RA patients, correlat-
ing with disease activity and the degree of synovitis on ultrasound. 
In particular, lipid subclasses were decreased in lysophosphati-
dylcholine (LPC) and increased in phosphatidylcholine, its ester, 
triacylglycerol, and sphingomyelin. Similar changes, although less 
pronounced, were found in the serum lipidome profile. It is be-
lieved that the immunomodulatory effect of LPC depends on its 
biochemical structure: saturated and monounsaturated LPC spe-
cies have a pro-inflammatory effect, whereas polyunsaturated spe-
cies have an anti-inflammatory effect.118

Additionally, depletion of short-chain acylcarnitine was detect-
ed in the serum of women predisposed to RA.119 The blood lipid 
spectrum in patients with active RA and high laboratory activity 
(CRP and erythrocyte sedimentation rate (ESR) levels) was similar 
to the lipid profile in patients with preclinical RA and normal CRP/
ESR levels. This confirms the occurrence of dyslipidemia at the 
preclinical stage of RA.119

The relationship of lipid abnormalities with RA activity and 
acute-phase blood indices is also indicated in several other stud-
ies. Boers et al.120 found the lowest levels of LDL-C and HDL-C 
in high RA activity. An association was found between levels of 
total cholesterol, CRP, and DAS28 activity index.121 Park et al.,122 
in their study of lipid disorders in untreated RA patients, revealed 
a negative association of HDL-C and apoA1 concentrations with 
CRP. In the work of White et al.,123 they confirmed the relation-
ship between low HDL-C and high CRP/ESR levels. According to 
other data, lower serum HDL-C and apoA1 levels were observed 
in RA patients not only with high CRP levels but also with RF 
positivity and hand synovitis.124,125

During inflammation, lipoprotein (a) (Lp(a)) synthesis and 
expression increase, similar to acute-phase proteins.126 Lp(a) is 
a cholesterol-rich plasma lipoprotein subclass consisting of LDL 
particles attached to apoA. In RA patients, blood Lp(a) concentra-
tion and apoB/apoA1 ratio were significantly higher than in the 
control group.122,124 Higher levels of Lp(a), proinflammatory, and 
proatherogenic modified LDL associated with RA are independent 
risk factors for CVD.127

The comparative characterization of serum blood lipids in 
RA patients and healthy controls is presented in Table 3.91-
93,96,99,109,110,112,122-125,128-139

In a study by Memon et al.,140 it was observed that experimen-
tally induced infection increases the level of oxidized lipids in se-
rum, which may induce LDL oxidation in vivo and be a mechanism 
leading to increased CVD in patients with chronic infections and 
inflammatory diseases. The results of several subsequent studies 
confirmed higher blood levels of ox-LDL in RA patients compared 
to healthy controls.141,142 LPC is known to be a major component 

of оx-LDL.143 Recently published research in RA patients demon-
strated a possible atherogenic effect of IgG anti-ox-LDL antibod-
ies.144,145 Specifically, it was shown that anti-ox-LDL titers (p = 
0.020) may predict the presence of coronary ASP (noncalcified, 
partially calcified, and high-risk plaque) in RA patients with lower 
LDL-C levels (<1.8 mmol/L).144

The influence of pro-inflammatory cytokines on lipid metabo-
lism and the pro-atherogenic potential of immune cells in RA is 
presented in Figure 1.

The most negatively charged LDL subcomponent associated 
with atherosclerosis is L5.146 In RA, L5 may contribute to athero-
sclerosis by enhancing foam cell formation by macrophages and 
increasing the expression of M1 macrophage-associated markers 
(TNF-α, IL-6, and IL-8).147

Heterogeneity and functions of HDL
The first study on the determination of HDL subfractions in RA 
patients was carried out by Hurt-Camejo et al. in 2001.99 The 
authors found a decrease in HDL2 in RA patients compared to 
healthy individuals, while the levels of total cholesterol, LDL-C, 
HDL-C, TG, apoB, and apoA1 did not differ.99 In another study, 
lower levels of HDL2 and HDL3 were found in 45 patients with 
RA (especially women) compared to healthy controls.148 The study 
demonstrated a moderate effect of RA activity on HDL2 levels. 
HDL2 concentration was reduced by 0.06 mmol/L with increasing 
DAS28 adjusted for sex, age, RA duration, and glucocorticoid use.

The inflammatory process in RA may attenuate the potential an-
ti-atherogenic effect of HDL, causing a decrease in HDL-C levels 
and a reduction in antioxidant capacity. This reduction in antioxi-
dant capacity may reduce the ability to eliminate cholesterol from 
cells, potentially leading to proinflammatory properties of lipopro-
teins.57,58 Proinflammatory HDL has been detected in the blood 
of patients with CVD,149 RA, and SLE.150 Charles-Schoeman et 
al.151 showed that proinflammatory HDLs were more frequently 
found in RA patients than in healthy individuals (20% and 4%, 
respectively, p < 0.006). Age, disease activity, erosive process, 
smoking, and non-Caucasoid race were correlated with proinflam-
matory HDL.

Further examination of the composition of proinflammatory 
HDL in RA patients revealed elevated levels of acute-phase pro-
teins and complement factors compared to normal HDL.59 Moreo-
ver, changes in the acetylhydrolase activity of HDL enzymes were 
observed: a decrease in PON1 and an increase in platelet-activat-
ing factor acetylhydrolase.

MPO may contribute to the atheroprotective effect of HDL in 
RA. MPO is an enzyme found in macrophages and neutrophils, 
acting as a mediator of inflammation and oxidative stress.152,153 
Several studies have found increased MPO concentration and ac-
tivity in RA patients compared to healthy controls and patients with 
other rheumatic diseases (osteoarthritis, ankylosing spondylitis, 
SLE, and Sjögren’s syndrome).154–157 The high inflammatory sta-
tus of RA and markers of acute-phase response (CRP, ESR) were 
associated with increased MPO activity.154,156,158 MPO content in 
synovial fluid was higher in untreated RA patients compared to 
treated patients; moreover, in untreated patients, MPO concentra-
tion and activity correlated with IL-8 and IL-18 content.157

In a recent study by Alisik et al.,138 MPO levels were higher in 
RA patients with concomitant CVD compared to RA patients with-
out CVD. According to receiver operating characteristic analysis, 
the ratio of MPO to PON1, which characterizes HDL dysfunction, 
appeared to be more associated with CVD in RA.

https://doi.org/10.14218/GE.2024.00036


DOI: 10.14218/GE.2024.00036  |  Volume 00 Issue 00, Month Year6

Gerasimova E.V. et al: Lipid and lipoprotein in rheumatoid arthritisGene Expr

Table 3.  Lipid spectrum of the blood of rheumatoid arthritis (RA) patients, healthy controls (HC)

Researchers Year Number of RA patients/HC Results

Lazarevic et al.128 1992 69/65 ↓ LDL-C, TC, HDL-C, more pronounced 
in patients with high RA activity

Park et al.122 1999 42/42 ↓ HDL-C и apoА1, ↑ Lp(а) and AI; correlations between 
HDL-C and CRP (r = −0.35), apoA1 and CRP (r = −0.44)

Hurt-Camejo et al.99 2001 31/28 TC, LDL-C, TG, HDL-C, apoB, apoA1 did not 
change. ↑ subfractions LDL1, ↓ HDL

Kim et al.91 2004 54/50 ↓ TC, LDL-C

Choi et al.125 2005 104/NHANES (>60 лет) ↓ HDL-C and apoA1; inverse correlations HDL-C 
levels with CRP, RF, and synovitis of the hands

White et al.123 2006 204/75 ↑ LDL-C; ↓ HDL-C; ↑ AI; negative correlations HDL-C 
and CRP, HDL-C and ESR and positive – LDL-C and ESR

Georgiadis et al.109 2006 58/63 ↑ TC, LDL-С, TG; ↓ HDL-С; ↑ AI

Popkova et al.129 2007 84/15 ↑ TG, apoА1; ↓ LDL-С; TC and HDL-С did not differ

Gonzalez et al.130 2008 603/603 TC, HDL-C, LDL-C, TG, apo did not change

Myasoedova et al.92 2010 577/540 ↓ TC, LDL-С: 5 years before the development of RA

Boyer et al.131 2011 2,956/3,713 ↓ HDL-С

Liao et al.93 2013 2,005/NHANES ↓ TC and LDL-С

Pozzi et al.132 2015 30/30 TC, LDL-C, TG, apoA1 did not differ, ↑ HDL-C, apoЕ, ↓ apoВ

Chavan et al.110 2015 50/50 ↑ TC, LDL-C; ↓ HDL-C

Govindan et al.124 2015 30/30 ↓ HDL-C and apoA1, ↑ AI

Kim et al.133 2016 33/13 ↓ HDL-C, ↑TG, СЕТР, AGEs, apoА1

Ormseth et al.134 2016 169/92 ↓ LDL-C; CEC did not differ

Rodríguez-Carrio et al.135 2017 113/113 ↑ HDL-C, TG, ↓PON1; TGhighHDLlow profile did not differ 
and was associated with increased TNF-α, MCP-1, leptin, 
and INF- γ-inducible protein-10 (p < 0.05 in all cases)

Tejera-Segura et al.96 2017 178/223 ↓ HDL-C, LDL-C, apoА; ↑ Lp(a). In patients with 
RA activity, a decrease in CEC was detected, 
in contrast to patients with remission.

Burggraaf et al.136 2018 312/57 No differences were detected in the lipid profile; ↑ аpoAI, 
аpoB48. ApoB48 correlated with TG (r = 0.645, p < 0.001)

Dessie et al.137 2020 73/40 ↑ TC, TG; ↑TC/HDL and LDL/HDL ratios; ↓ HDL-C; LDL-C did 
not differ. HDL-C negative correlation with CRP, and TC/HDL-C 
and LDL/HDL-C had а direct association with CRP (p < 0.05).

Alisik et al.138 2021 130/67 No differences were detected in the lipid profile; ↑ 
MPO/PON1 ratios in RA patients, especially high with 
CVD history. MPO/PON1 ratios were significant positive 
correlated with DAS28 scores (r = 0.357, p < 0.001)

Rodríguez-Carrio et al.112 2021 60/28 In RA patients, 2 oxylipin clusters (cluster I and cluster II) 
were identified in contrast to the control group (p = 0.003).

Chang et al.139 2023 80/15 ↑ particle number, cholesterol ester, free cholesterol, 
and phospholipids in large/very large-sized HDL; 
small-sized HDL negative correlation with CRP; ACPA-
positivity was associated with HDL- metabolites.

ACPA, anti-citrullinated protein antibody; AGEs, advanced glycation end products; AI, atherogenic index (TC/HDL-C); apo, apolipoprotein; CEC, cholesterol efflux capacity; CETP, 
cholesteryl ester transfer protein; CRP, C-reactive protein; CVD, cardiovascular disease; ESR, erythrocyte sedimentation rate; HC, healthy controls; HDL-C, high-density lipoproteins 
cholesterol; INF-γ, interferon-gamma; LDL-C, low-density lipoproteins cholesterol; Lp(a), lipoprotein (a); MCP-1, monocyte chemotactic protein; MPO, myeloperoxidase; NHANES, 
National Health and Nutrition Examination Surveys; PON1, paraoxonase-1; RA, rheumatoid arthritis; RF, rheumatoid factor; TC, total cholesterol; TG, triglycerides; TNF-α, tumor 
necrosis factor alpha.
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The best-studied effects of MPO on CVD include the formation 
of dysfunctional atherogenic lipoproteins, decreased nitric oxide 
availability, and endothelial dysfunction leading to vasoreactivity 
and ASP instability.159 These effects strongly suggest that MPO 
is directly involved in the pathophysiology of CVD in RA.160,161

Thus, inflammation and high RA activity may reduce antioxi-
dant properties and contribute to the proatherogenic potential of 
HDL. However, there is no clear consensus on whether this mecha-
nism affects CVD risk in RA.161

HDL becomes proatherogenic against the backdrop of inflam-
mation due to decreased CEC from macrophages, which is an in-
dependent risk factor for CVD.96,162

The efficacy of CEC is known to correlate directly with the 
properties of plasma lipid transport proteins. Decreases in CETP 
mass and activity were found in RA patients compared to healthy 
subjects,96 with the lowest rates observed in RA patients on gluco-
corticoids.163

Studies have shown no difference or a decrease in CEC in RA 
patients compared with healthy donors.96,155,161,164,165 A meta-
analysis confirmed no differences in HDL-C efflux capacity and 
concentration between patients with RA and controls.166

In a recent study including 195 SLE patients and 265 RA pa-
tients, more severe CEC impairment was noted in SLE patients 
compared to RA patients.167 Although both diseases share com-
mon features of inflammatory dyslipidemia, RA patients had lower 
HDL-C levels and higher apoB levels than SLE patients.

Importantly, patients with high RA activity (DAS28 > 5.1) had 
lower CEC than patients in remission.96,164 The association of high 
RA activity with suppression of CEC may be indicated by inverse 

correlations of cholesterol efflux with DAS28 (r = −0.39, р = 0.01) 
and ESR (r = −0.41, р < 0.001).164 Multivariate analysis revealed 
that smoking, diabetes, ESR, and glucocorticoid use were correlat-
ed with CEC. However, according to Ormseth et al.,161 cholesterol 
efflux was not associated with RA activity, the systemic inflam-
mation index CRP, oxidative stress (urinary F2-isoprostanes), or 
insulin resistance measured by the HOMA index. The authors con-
cluded that net cholesterol efflux capacity by HDL-enriched serum 
is not altered in patients with well-controlled RA.

Liao et al.165 studied the blood lipid spectrum and CEC in RA 
patients with CRP concentration ≥10 mg/L. After one year of ther-
apy and a 23.5 mg/L decrease in CRP, patients showed a 7.2% 
increase in HDL-C (р = 0.02) and a 5.7% increase in CEC (р = 
0.002). The decrease in CRP concentration was accompanied by 
an increase in apoA1 (r = 0.27, p = 0.01) and CEC (r = 0.24, р = 
0.002).

When CEC mediated by SR-B1, ABCG1, and ABCA1 were 
studied using apoB-depleted serum, Ronda et al.168 found that 
only ABCG1-mediated CEC was lower in active RA patients 
compared with controls. The same authors later conducted a com-
parative study of CEC before and after 6 months of methotrex-
ate as monotherapy and in combination with the TNF-α inhibitor 
adalimumab.169 Methotrexate monotherapy moderately increased 
SR-B1- and ABCG1-mediated CEC by 6% and 7%, respectively. 
Multidirectional associations of ABCG1-mediated CEC with se-
rum HDL-C concentration (r = 0.18, p = 0.047) and DAS28 (r = 
−0.247, p = 0.018) were observed in RA patients after 6 months 
of combination therapy with methotrexate and a TNF-α inhibitor. 
The study found no correlation between CEC and inflammatory 

Fig. 1. The influence of pro-inflammatory cytokines on lipid metabolism and the pro-atherogenic potential of immune cells in RA. Pro-inflammatory cy-
tokines (TNF-α, IL-6, and IL-1β) are produced in large quantities locally in the joints and subsequently enter the bloodstream. TNF-α and IL-6 may promote 
LDL metabolism by increasing the expression of LDLR and SR-B1 on the surface of liver cells. Moreover, TNF-α and IL-1β can reduce the formation of pro-
ApoA1 particles in the liver by suppressing HDL production. Presentation of antigenic peptides from ApoB by antigen-presenting cells (APCs) promotes the 
formation of effector T cells from naïve (CD4+) T helper cells. APCs oxidize LDL-C particles, process, and present peptides from ApoB on major histocompat-
ibility complex molecules. The specific T cell receptor is responsible for recognizing antigen fragments in the form of peptides bound to major histocompat-
ibility complex molecules. Under the influence of co-stimulatory signals and cytokines secreted by APCs, T cells express transcription factors that promote 
differentiation into distinct Th types, which produce specific cytokines that can act both atheroprotectively and proatherogenic. anti-apoA1, antibodies 
against apolipoprotein A1; anti-HDL-Ab, anti-HDL antibodies; APCs, antigen-presenting cells; CRP, C-reactive protein; HDL, high-density lipoproteins; ICAM-1, 
intercellular adhesion molecule 1; IL, interleukin; LDL-C, low-density lipoprotein cholesterol; LDLR, low density lipoprotein receptor; LPC, lysophosphatidyl-
choline; MHC, major histocompatibility complex; ox-LDL, oxidized low-density lipoproteins; RA, rheumatoid arthritis; SR, scavenger receptor; TCR, T-cell 
receptor; Th, T helper; TNF, tumor necrosis factor; VCAM-1, vascular cellular adhesion molecule-1.
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markers.
As noted by Ormseth & Stein in their review, there is no uni-

form data on the significance of impaired CEC in RA patients and 
the influence of disease activity or inflammation on it.161 A meta-
analysis of HDL cholesterol efflux capacity and concentration in 
RA showed improvement in CEC with early administration of 
antirheumatic therapy and control of inflammation.166 However, 
the authors noted that the results should be interpreted with cau-
tion due to the heterogeneity of groups and methodologies in those 
studies.

CEC is considered a sensitive predictor of cardiovascular risk in 
the general population.170,171 Nevertheless, the association of CEC 
with CVD risk in RA appears to be ambiguous.

In a study by Vivekanandan-Giri et al.,155 no differences were 
found between RA patients with and without CVD. According to 
Ormseth et al.,134 an increase in net CEC by HDL-enriched serum 
was not significantly associated with a decrease in coronary cal-
cium score (odds ratio (OR) = 0.78 [95% CI 0.51–1.19], p = 0.24), 
adjusting for age, sex, race, the Framingham cardiovascular risk 
scale, and the presence of diabetes. Another study demonstrated 
the association of high CEC with a low risk of carotid ASP de-
velopment in RA patients (OR = 0.94 [95% CI 0.89–0.98], p = 
0.015).96

Convincing data on the impact of rheumatoid inflammation on 
CEC and its contribution to the development of atherosclerosis 
and associated CVD were reported in 2023. Karpouzas et al.172 
confirmed the inverse association of systemic inflammation meas-
ured by CRP and disease activity measured by DAS28-CRP with 
ABCA1-mediated CEC. ABCA1-mediated CEC was associated 
with less progression and fewer coronary ASPs in patients with 
low baseline and cumulative CRP levels, in patients not receiving 
glucocorticoids, and in patients on disease-modifying antirheumat-

ic drug therapy. In contrast, ABCA1-mediated CEC was associ-
ated with accelerated development of coronary atherosclerosis in 
patients with baseline high CRP levels and in those receiving glu-
cocorticoids but not methotrexate or biologic disease-modifying 
antirheumatic drugs.173

In another study by these authors,172 ABCG1-mediated CEC 
was inversely correlated with a large number (≥5) of carotid ASPs 
(adjusted OR 0.50 [95% CI 0.28–0.88]), numbers of partially cal-
cified (rate ratio 0.71 [0.53–0.94]), and low-attenuation plaques 
(rate ratio 0.63 [0.43–0.91] per standard deviation increment). 
Low-attenuation plaques on coronary computed tomography an-
giography are known to be associated with ASP progression and 
instability.

The general form of atherothrombosis in RA is shown sche-
matically in Figure 2.

Thus, in well-treated RA with controlled disease activity, 
ABCA1-CEC may exhibit atheroprotective actions. Conversely, 
in uncontrolled RA, inflammation promotes the development of 
proatherogenic properties of ABCA1-CEC.166,173

Conclusions
Interest in the study of lipids and lipoproteins in RA remains 
high. New data on the development of lipid abnormalities have 
been obtained in the preclinical phase of RA research. Studies 
have demonstrated differences in lipid and lipidome profiles de-
pending on disease phase, inflammation activity, and study meth-
ods. Lipids may contribute to progression or exert a protective 
effect in RA depending on their type and metabolites. Inflam-
mation or disease activity appears to have a deleterious effect on 
HDL-mediated reverse cholesterol transport activity. Effective 
treatment of inflammation by adequate control of RA activity 

Fig. 2. LDL passes through the endothelium. Under the influence of MPO, LDL is oxidized. Under the influence of macrophages, ox-LDL is taken up and turns 
into foam cells. Proinflammatory HDL shows marked changes in proteins (↑ SAA and MPO and ↓ apoA1 and PON1). This circumstance leads to the inability 
of HDL to block the expression of ICAM/VCAM on endothelial cells (1), remove cholesterol from foam cells (2), and exhibit its antioxidant ability (3). Ox-LDL 
triggers the proliferation and migration of smooth muscle cells. A conglomerate of foam cells and smooth muscle cells forms an atherosclerotic plaque. Apo, 
apolipoprotein; HDL, high-density lipoproteins; ICAM-1, intercellular adhesion molecule 1; IFN-α, interferon-alpha; IL, interleukin; LDL, low-density lipopro-
teins; MPO, myeloperoxidase; ox-LDL, oxidized low-density lipoproteins; PON1, paraoxonase-1; SAA, serum amyloid A; TNF-α, tumor necrosis factor alpha; 
VCAM-1, vascular cellular adhesion molecule-1.
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can offset proatherogenic abnormalities in lipid and lipoprotein 
metabolism.
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